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1. Introduction 

It is well-documented that risk-neutral distribution of the stock market returns is left-

skewed and fat-tailed (See, for example, Rubinstein (1994), Jackwerth (2000), and Bakshi, 

Kapadia, and Madan (2003)). In the tradition of Jackwerth and Rubinstein (1996) and Bates 

(2000), the skewness and kurtosis of the risk-neutral distribution are linked to the 

characteristics of market jumps such that the fear of market crashes imparts negative skewness 

and positive kurtosis to the distribution. Many researchers have examined the importance of 

these higher moments, as well as volatility, in pricing securities.1 In particular, with respect to 

option pricing, models incorporating stochastic volatility and jump of equity returns have been 

proposed.2  

A related but different strand of literature focuses on estimating the risk-neutral moments 

and examining their information contents. In particular, Bakshi and Madan (2000), Carr and 

Madan (2001), and Bakshi, Kapadia, and Madan (2003) develop the method to extract the 

moments from the cross section of market option prices, not relying on any specific option 

pricing model. The moments inferred from the current option prices are forward-looking, 

reflecting the most recent market evaluation for future return distribution. 

This paper investigates the role of ex ante risk-neutral moments in explaining the delta-

hedged option gains. The delta-hedged option gains represent the excess dollar returns of an 

option after hedging out the option exposure to the underlying asset movement. The negativity 

of the delta-hedged gains is well-documented and often explained by the negative volatility 

                                                           
1 Building on Kraus and Litzenberger (1976), an impressive range of researchers, including Harvey and Siddique (1999, 2000), 

Dittmar (2002), and Chabi-Yo (2008), have investigated three- and four-factor capital asset pricing models. 
2 Examples are Duffie, Pan and Singleton (2000), Bakshi, Cao and Chen (1997, 2000), Bakshi and Cao (2003), Bates (1991, 2000), 

Heston (1993), Hull and White (1987), Johnson and Shanno (1987), Kim and Kim (2004, 2005), Scott (1987), Stein and Stein 

(1991) and Wiggins (1987).  
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risk premium (See Coval and Shumway (2001), Pan (2002), Bakshi and Kapadia (2003), and 

Eraker, Johannes, and Polson (2003)). Investors are willing to pay a premium for buying 

market volatility because it provides hedges against a market decline coinciding with a 

volatility rise. Apart from the volatility, however, the possibility of jump events affects option 

prices (Jackwerth and Rubinstein (1996) and Bates (2000)). If option prices incorporate a 

nonzero jump risk premium, then the ex ante skewness and kurtosis, which reflect the investors’ 

evaluation of possible future stock market crashes, may influence the losses on the delta-

hedged option strategy. 

The idea that the higher-order moments might play an important role in explaining the 

delta-hedged option gains is not original to this study. Bakshi and Kapadia (2003) explore the 

effect of the risk-neutral skewness and kurtosis on the delta-hedged gains, but their analysis is 

restricted to the near-the-money call options for the period from 1988 to 1995. After the period 

examined in Bakshi and Kapadia (2003), the stock market has gone through several downward 

spikes including the Asian financial crisis in 1997, the burst of Internet bubble in 2000, and 

the recent financial crisis in 2008. If investors’ attitudes toward the risk have changed over the 

period under consideration, risk premium incorporated in option prices might have altered. 

Thus, we revisit the relation between the delta-hedged gains and the risk-neutral moments by 

examining both call and put options for a wide range of moneyness from 1996 through 2014. 

For our empirical analysis, we define the delta-hedged option gain as the change in the 

value of a portfolio that buys one Standard and Poor’s (S&P) 500 index option and involves 

positions in the S&P 500 index so that the portfolio is not sensitive to index movement. The 

portfolio is rebalanced daily over the maturity of the option. We also compute daily moments 

of market returns implied in S&P 500 index option prices following the model-free 
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methodology of Bakshi, Kapadia, and Madan (2003). Consistent with previous work on the 

negative market volatility risk premium, we find that delta-hedged option gains are 

significantly negative and decrease with ex ante volatility.  

Our principal finding is that the delta-hedged gains are negatively associated with ex ante 

skewness and kurtosis among call options, but positively associated with the higher moments 

among put options. The same pattern holds for all moneyness and maturity categories. We 

interpret these results to imply that investors would willing to pay a premium to hold call 

options in their portfolio when they anticipate positive jumps because call prices react 

positively to positive jump shocks. Similarly, when anticipating negative jumps, investors 

would willing to pay a premium to hold put options. 

Our finding on the relation between the delta-hedged gain and higher moments is the 

opposite of the conclusion by Bakshi and Kapadia (2003) that the impact of skewness and 

kurtosis is less clear. They find that skewness is positively associated with the delta-hedged 

gains among the near-the-money calls, but only marginally significant. What differentiates our 

results from their work is the different sample periods, implying that risk premium incorporated 

in option prices have changed going through several market crashes.  

The empirical results of this article strengthen the view that investors in the equity index 

option market consider higher moments in market returns. Specifically, our finding of different 

relation between higher moments and delta-hedged gains across call and put options 

complements the previous study focusing on a representative call option. Our results indicate 

that impacts of higher moments on options vary with exposures to jump risk, consistent with 

the view that writing index call options hedges positive jump risk while purchasing put options 

hedges negative jump risk. 



- 4 - 
 

The rest of the paper is organized as follows. In the next section, we discuss the data used 

in our analysis and detail the method to estimate ex ante measures of volatility, skewness, and 

kurtosis, proposed in Bakshi, Kapadia, and Madan (2003). In Section 3, we examine how the 

gains from delta-hedged option portfolios are related to ex ante moments of the stock market’s 

risk-neutral probability distributions. Section 4 concludes our study by summarizing the results.  

 

2. Data and Ex Ante Risk-Neutral Moments 

2.1.Data 

Our sample period covers January 1996 to December 2014. The S&P 500 index option data 

come from the Ivy OptionMetrics database. The data include the end-of-day bid and ask quotes, 

implied volatilities, open interest, and trading volume for the S&P 500 index options. We also 

obtain data on the daily S&P 500 index values and estimates of dividend yields, as well as the 

term structures of zero-coupon interest rates constructed from LIBOR quotes and Eurodollar 

futures prices. 

The following rules are applied in order to filter the data. To avoid microstructure-related 

bias, we exclude options whose prices are less than $3/8, as well as options with maturities less 

than two weeks or longer than 60 days. We eliminate all options that have implied volatilities 

less than 1% or more than 100% in order to minimize the impact of recording errors. We also 

discard all option observations that violate no-arbitrage bounds. Finally, we define the 

moneyness of the option as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1, where S is the underlying index value, 𝐾 is 

the strike price, 𝜏 is the time-to-maturity, 𝑟 is the risk-free rate, and 𝛿 is the dividend yield. 

Then, we omit deep away-from-the-money options by restricting y to the ± 10% range. Our 

option sampling procedure results in 327,670 calls and 336,226 puts.  
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We divide options into two maturity groups and eight moneyness categories, following 

Bakshi and Kapadia (2003): options with maturity 14-30 days and 31-60 days and with ranges 

of moneyness from -10% to +10% by 2.5%. Table 1 reports the number of days when the 

options data are observed during our sample period, the average daily number of options, price 

(i.e., midpoint of the bid and ask quotes), bid-ask spread, trading volume, and open interest, 

separately for options grouped over maturity and moneyness combinations. Panel A is for call 

options and Panel B is for put options.  

 

 [Table 1 about here] 

 

Panel A of Table 1 shows that on average the number of call options traded on each day is 

about 46, ranging from three to eight depending on the moneyness category and having the 

largest value in the category of y ∈ [−2.5%, 0%). Trading volume and open interest show that 

options with y ∈ [−2.5%, −2.5%]  has the largest value, indicating that near-the-money 

options are most actively traded. Not surprisingly, option prices increase monotonically with 

the moneyness. For example, deep out-of-the-money (OTM) call options with y ∈

[−10%, −7.5%) have the average price of 1.93, while deep in-the-money (ITM) call options 

with y ∈ [7.5%, 10%) have the average price of 104.49. Bid-ask spreads in dollar amount also 

increase with the moneyness. In term of relative values to option prices, however, the 

percentage spreads decrease with moneyness. We find similar patterns in Panel B for put 

options. Put option prices and dollar bid-ask spreads decrease monotonically as y increases. 

Also, near-the-money or slightly OTM put options with y ∈ [0%, 5%] are most actively traded. 
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2.2.Ex Ante Risk-Neutral Moments 

Bakshi and Madan (2000) show that the continuum of options can span any payoff function 

with bounded expectation. Based on this insight, Bakshi, Kapadia, and Madan (2003) 

formalize a mechanism to extract model-free estimates of risk-neutral moments from a set of 

option prices with different strike prices. Specifically, the date t risk-neutral moments of the 

index return over the period [𝑡, 𝑡 + 𝜏] can be calculated as  

𝑉𝐴𝑅(𝑡, 𝜏) = 𝑒𝑟𝜏𝑉(𝑡, 𝜏) − 𝜇(𝑡, 𝜏)2 (1) 

𝑆𝐾𝐸𝑊(𝑡, 𝜏) =
𝑒𝑟𝜏𝑊(𝑡, 𝜏) − 3𝜇(𝑡, 𝜏)𝑒𝑟𝜏𝑉(𝑡, 𝜏) + 2𝜇(𝑡, 𝜏)3

[𝑒𝑟𝜏𝑉(𝑡, 𝜏) − 𝜇(𝑡, 𝜏)2]3/2
 (2) 

𝐾𝑈𝑅𝑇(𝑡, 𝜏) =
𝑒𝑟𝜏𝑋(𝑡, 𝜏) − 4𝜇(𝑡, 𝜏)𝑊(𝑡, 𝜏) + 6𝑒𝑟𝜏𝜇(𝑡, 𝜏)2𝑉(𝑡, 𝜏) − 𝜇(𝑡, 𝜏)4

[𝑒𝑟𝜏𝑉(𝑡, 𝜏) − 𝜇(𝑡, 𝜏)2]2
 (3) 

where  

𝜇(𝑡, 𝜏) = 𝑒𝑟𝜏 − 1 − 𝑒𝑟𝜏𝑉(𝑡, 𝜏)/2 − 𝑒𝑟𝜏𝑊(𝑡, 𝜏)/6 − 𝑒𝑟𝜏𝑊(𝑡, 𝜏)/24 (4) 

and 𝑉(𝑡, 𝜏) , 𝑊(𝑡, 𝜏) , and 𝑋(𝑡, 𝜏)  are the linear combinations of OTM call option prices 

𝐶(𝑡, 𝜏, 𝐾) and put option prices P(𝑡, 𝜏, 𝐾), with time-to-maturity 𝜏 and strike price K:  

𝑉(𝑡, 𝜏) = ∫
2(1 − 𝑙𝑛(𝐾 𝑆𝑡⁄ ))

𝐾2
𝐶(𝑡, 𝜏, 𝐾)𝑑𝐾 + ∫

2(1 − 𝑙𝑛(𝐾 𝑆𝑡⁄ ))

𝐾2
𝑃(𝑡, 𝜏, 𝐾)𝑑𝐾

𝑆𝑡

0

∞

𝑆𝑡

, (5) 

𝑊(𝑡, 𝜏) = ∫
6𝑙𝑛(𝐾 𝑆𝑡⁄ ) − 3(𝑙𝑛(𝐾 𝑆𝑡⁄ ))

2

𝐾2
𝐶(𝑡, 𝜏, 𝐾)𝑑𝐾

∞

𝑆𝑡

+ ∫
6𝑙𝑛(𝐾 𝑆𝑡⁄ ) − 3(𝑙𝑛(𝐾 𝑆𝑡⁄ ))

2

𝐾2
𝑃(𝑡, 𝜏, 𝐾)𝑑𝐾

𝑆𝑡

0

, 

(6) 
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𝑋(𝑡, 𝜏) = ∫
12(𝑙𝑛(𝐾 𝑆𝑡⁄ ))

2
− 4(𝑙𝑛(𝐾 𝑆𝑡⁄ ))

3

𝐾2
𝐶(𝑡, 𝜏, 𝐾)𝑑𝐾

∞

𝑆𝑡

+ ∫
12(𝑙𝑛(𝐾 𝑆𝑡⁄ ))

2
− 4(𝑙𝑛(𝐾 𝑆𝑡⁄ ))

3

𝐾2
𝑃(𝑡, 𝜏, 𝐾)𝑑𝐾

𝑆𝑡

0

. 

(7) 

It is important to note that the Bakshi, Kapadia, and Madan (2003)’s measures have the 

advantage of being forward-looking in contrast with traditional historical moment estimates. 

Since they are inferred from the contemporaneous option prices data, they impart investors’ 

expectations of future index values. Also, the Bakshi, Kapadia, and Madan (2003)’s option-

implied moments are model-free and therefore, we do not need to specify any particular option 

pricing model.  

A challenge for estimating the model-free option-implied moments using expressions (5) 

to (7) is that options are available only over a finite range of strike prices while an infinite 

continuum of strike prices is needed. To address this issue, we follow Jiang and Tian (2005) 

and Chang, Christoffersen, and Jacobs (2013). Specifically, we apply the curve-fitting method 

to implied volatilities and use the endpoint implied volatilities to extrapolate for options with 

strike prices beyond the available range. We estimate the daily moments only for days that 

have at least two OTM calls and two OTM puts available for a given maturity. We use a 

trapezoidal approximation to estimate the integral in expressions (5) to (7) using discrete data. 

We calculate the implied moments over a 30-day horizon using linear interpolation between 

maturities.  

Figure 1 shows the daily estimates of volatility, skewness, and kurtosis for a fixed 30-day 

horizon. All three time series vary significantly through time. The volatility peaks in 2008, 

during the financial crisis, then declines through 2014. The skewness is always negative and 
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the kurtosis is always larger than three.3 The skewness stays relatively flat through 2008 after 

which it tends to decline, while the kurtosis increases during the same period, more than 

doubling from 2008 through 2014. We can find the same patterns in Table 2, which reports the 

5th, 50th, and 95th percentiles of daily estimates of option implied moments over time for each 

year during the sample period. In sum, the results in Figure 1 and Table 2 clearly show that 

index returns are strongly negatively skewed and fat-tailed, consistent with previous studies4. 

Most notably, these departures from normality become more pronounced after the 2008 

financial crisis.    

 

 [Figure 1 about here] 

 

[Table 2 about here] 

 

3. Empirical Results 

3.1.Statistical Properties of Delta-Hedged Gains 

We begin by computing delta-hedged option gain, which is the change in the value of a 

self-financing portfolio consisting of a long position in the option, hedged by the underlying 

index so that the portfolio value is not sensitive to index value movement. Our calculation of 

the discrete delta-hedged gains follows Bakshi and Kapadia (2003). Specifically, the hedge is 

                                                           
3 One exception is that kurtosis estimate on July 13, 2009 is less than three. On that day, the estimates of volatility, skewness, and 

kurtosis are 25.29%, -1.027, and 1.923, respectively. 
4 See, for example, Bakshi, Cao and Chen (1997, 2000), Bakshi, Kapadia and Madan (2003), Dennis and Mayhew (2002), Derman 

(1999) and Rubinstein (1994).  
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rebalanced at each of the dates until expiration.5 The daily rebalanced delta-hedged call option 

gain over the period [𝑡, 𝑡 + 𝜏], 𝜋𝑡,𝑡+𝜏, is computed as  

𝜋𝑡,𝑡+𝜏 = 𝐶𝑡+𝜏 − 𝐶𝑡 − ∑ ∆𝑡𝑛
(𝑆𝑡𝑛+1

− 𝑆𝑡𝑛
)

𝑁−1

𝑛=0
− ∑ 𝑟𝑛(𝐶𝑡𝑛

− ∆𝑡𝑛
𝑆𝑡𝑛

)
𝜏

𝑁

𝑁−1

𝑛=0
, (8) 

where ∆𝑡𝑛
is the delta of the option and 𝑟𝑛  is annualized risk-free rate at each of the dates 

𝑡𝑛, 𝑛 = 0,1, … , 𝑁 − 1 (where we define 𝑡0 = 𝑡, 𝑡𝑁 = 𝑡 + 𝜏 ). Similarly, daily rebalanced delta-

hedged put option gain is computed as  

𝜋𝑡,𝑡+𝜏 = 𝑃𝑡+𝜏 − 𝑃𝑡 − ∑ ∆𝑡𝑛
(𝑆𝑡𝑛+1

− 𝑆𝑡𝑛
)

𝑁−1

𝑛=0
− ∑ 𝑟𝑛(𝑃𝑡𝑛

− ∆𝑡𝑛
𝑆𝑡𝑛

)
𝜏

𝑁

𝑁−1

𝑛=0
 . (9) 

Table 3 presents for call options the averages of (i) the dollar delta-hedged gains (𝜋𝑡,𝑡+𝜏), 

(ii) the delta-hedged gains scaled by the index level (𝜋𝑡,𝑡+𝜏/𝑆𝑡), and (iii) the delta-hedged gains 

scaled by the option price (𝜋𝑡,𝑡+𝜏/𝐶𝑡), for each maturity and moneyness category. The averages 

of delta-hedged gains are negative and statistically different from zero for every moneyness 

and maturity groups, indicating that delta-hedged option strategy loses money regardless of 

moneyness and maturity.  

 

[Table 3 about here] 

 

Looking down a column of Table 3, we can see that the dollar delta-hedged call gains 

become more negative as the moneyness increases. For example, the results of call options 

with maturity 14-30 days in Panel A show that the delta-hedged loss from deep OTM calls 

                                                           
5 Because the exercise style of the S&P 500 index options is European, our results are not affected by the complication that arises 

owing to the early exercise feature of American options. 
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with y ∈ [−10%, −7.5%) is $0.22, while that from deep ITM calls with y ∈ [7.5%, 10%) is 

$6.02. When scaled by the index level, the delta-hedged loss increases monotonically from 1% 

of the index level to 50% as we move from OTM calls to ITM calls. However, after adjusting 

the different price levels of options across moneyess by scaling the dollar gains by the price, 

we can see that the magnitude of the delta-hedged loss relative to the option price decreases 

with moneyness. In Panel A, for example, the delta-hedged loss of deep OTM calls corresponds 

to about 60% of the option price, while that of deep ITM calls corresponds to about 6% of the 

option price. As reported in the next column labelled ‘(Ask-Bid)/C’, the percentage bid-ask 

spread decreases from 50% for deep OTM calls to 2% for deep ITM calls. When compared to 

the percentage bid-ask spread, the delta-hedged loss relative to the option price appears large 

in all moneyness and maturity groups. The rightmost column labelled ‘1𝜋<0 ’ shows the 

average frequency of negative delta-hedged gains among each group of options, indicating that 

more than 60% of delta-neutral option strategies lose money.  

A comparison of the results in Panels A and B of Table 3 shows that delta-hedged gains 

become more negative with maturity. For example, in the results for options with maturity 31-

60 days shown in Panel B, the delta-hedged loss for options with y ∈ [−2.5%, 0%) is $3.70, 

larger than that of $1.99 for options with maturity 14-30 days presented in Panel A. This is 

consistent with the theoretical prediction that the sensitivity of option prices with respect to the 

volatility (a so-called ‘vega’) increases with maturity, resulting in more negative risk premium 

for longer-maturity options. 

Table 4 reports the delta-hedged gains for put options. We can see that delta-hedged put 

gains are significantly negative for every moneyness and maturity groups. The dollar delta-

hedged put gains become less negative as y increases. For example, the results of puts with 
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maturity 14-30 days in Panel A show that the delta-hedged loss from deep ITM puts with y ∈

[−10%, −7.5%) is $9.59 (corresponding to 80% of the index level), while that from deep 

OTM puts with y ∈ [7.5%, 10%) is $1.59 (corresponding to 14% of the index level). After 

scaling the dollar gains by the option price, however, the delta-hedged loss relative to the 

option price increases with y. For example, in Panel A, the delta-hedged loss of deep ITM puts 

corresponds to about 8% of the option price, while that of deep OTM puts corresponds to about 

46% of the put price. The results for options maturing in 31-60 days in Panel B show similar 

patterns, but delta-hedged losses generally become larger. 

 

[Table 4 about here] 

 

When compared to the results in Table 3, delta-hedged loss is more severe for put options 

than for call options. The delta-hedged loss relative to the option prices is larger for puts than 

for calls, allowing for the average percentage bid-ask spread. Also, the frequency of negative 

delta-hedged gains tends to be higher for puts than for calls. About 66% to 86% of delta-hedged 

put strategies lose money depending on the maturity and moneyness, while the frequency of 

the negative gains from calls ranges from 60% to 68%. 

In sum, the results from both call and put options with a wide range of moneyness show 

that the delta-hedged strategy of index options underperforms zero after the period examined 

in Bakshi and Kapadia (2003).  

 

3.2.Delta-Hedged Gains and the Volatility Risk Premium 
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The evidence on the underperformance of delta-hedged option strategy is often explained 

by the negative volatility risk premium (Coval and Shumway (2001), Pan (2002), Bakshi and 

Kapadia (2003), and Eraker, Johannes, and Polson (2003)). Investors pay a premium for buying 

market volatility because it provides hedges against a market decline coinciding with a 

volatility rise. To the extent that the delta-hedged loss is driven by volatility risk premium, the 

expected volatility level should affect the delta-hedged loss. In this section, we examine the 

relation between ex ante volatility and the delta-hedged loss.  

In Table 5, we estimate for call options the following time-series regression of the delta-

hedged gains on the lagged gains and ex ante volatility:  

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝜀𝑡 ,  
 

(10)  

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡  is the model-free estimate of risk-neutral volatility, 

constructed following Bakshi, Kapadia, and Madan (2003). We have included a lagged gains 

in the regression to mitigate the problem of serial correlation in the residuals following Bakshi 

and Kapadia (2003). We also compute the t-statistics by Generalized Method of Moments 

(GMM) using the approach of Newey and West (1987) to account for time-series dependence.  

Unlike Bakshi and Kapadia (2003), where historical measures of volatility are used, we 

employ ex ante measure of volatility extracted from the current option prices. The ex ante 

measure has the advantage of being forward-looking and imparting concurrent investors’ 

expectations for future market returns in contrast with the historical estimates.  

The results in Table 5 show that coefficient estimates on volatility are negative for call 

options with all maturity and moneyness categories. The magnitude of coefficient estimates 

shows decreasing patterns over moneyness. For the options maturing within 14-30 days in 
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Panel A, the coefficient estimates on volatility decrease from -0.160 for y ∈ [−7.5%, −5%) 

to -0.016 for y ∈ [5%, 7.5%). Also, the negative coefficients lose the statistical significance 

for near-the-money and OTM calls. In Panel B, the results for the options maturing within 31-

60 days show the similar patterns, but the magnitude and statistical significance of negative 

coefficients on volatility become stronger in general. Coefficient estimates on the lagged gains 

are close to one throughout both panels, indicating strong serial correlation of delta-hedged 

gains.  

 

 [Table 5 about here] 

 

Table 6 reports the estimation results of regression of Eq. (10) for put options. We can see 

that coefficient estimates on volatility are negative for puts with most maturity and moneyness 

categories. As put options move toward being OTM, the negative relation between the delta-

hedged gains and volatility tend to lose its significance. The significance of negative 

coefficients on volatility becomes stronger with maturity. In comparison to the results in Table 

5, the magnitude and statistical significance of negative coefficients on volatility is generally 

larger for put options.  

 

[Table 6 about here] 

 

Overall, our evidence of negative relation between delta-hedged gains and ex ante volatility 

corroborates the negative volatility risk premium to the extent that higher volatility implies a 

more negative volatility risk premium. 
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3.3. Delta-Hedged Gains and Jump Exposures 

Researchers have recognized that the possibility of jump events, as well as volatility, affects 

option prices (See for example Jackwerth and Rubinstein (1996) and Bates (2000)). If option 

prices incorporate a nonzero jump risk premium, then the ex ante skewness and kurtosis, which 

reflect the investors’ evaluation of possible future stock market crashes, may influence the 

losses on the delta-hedged option strategy. In this section, we examine how ex ante skewness 

and kurtosis translate into the performance of the delta-hedged option strategy.  

In Table 7, we estimate for call options the following time-series regression of the delta-

hedged gains on the lagged gains and ex ante higher moments:  

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝛽3𝑆𝐾𝐸𝑊𝑡 + 𝛽4𝐾𝑈𝑅𝑇𝑡 + 𝜀𝑡 , 
 

(11) 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡, 𝑆𝐾𝐸𝑊𝑡, and 𝐾𝑈𝑅𝑇𝑡 are the model-free estimates of the 

risk-neutral volatility, skewness, and kurtosis, respectively, constructed following Bakshi, 

Kapadia, and Madan (2003).  

 

 [Table 7 about here] 

 

The results in Table 7 show that coefficient estimates on skewness and kurtosis are negative 

for call options with all maturity and moneyness categories. In Panel A of the 14-30 days option 

results, the coefficient estimates on skewness range from -0.02 to -0.94, with the tendency of 

ITM calls to have more negative estimates. The statistical significance is weak in OTM calls 

and deep ITM calls. However, in Panel B of the 31-60 days option results, the statistical 
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significance of negative impacts of higher moments on the delta-hedged gains become larger 

in comparison with those in Panel A. For example, t-statistics of coefficient estimates on 

skewness range from -2.92 to -5.24 in Panel B, while those in Panel A range from -1.27 to -

4.25. The coefficients on volatility are still negative after controlling for higher moments 

throughout. Overall, the results show that skewness and kurtosis are important sources of the 

loss of the delta-hedged call strategy apart from volatility. 

Table 8 reports the estimation results of regression of Eq. (11) for put options. We can see 

that coefficient estimates on volatility are mostly negative for puts after taking into account 

higher moments. Most importantly, coefficient estimates on skewness and kurtosis are positive 

in all maturity and moneyness groups. Although the magnitude and statistical significance of 

the positive relation vary with the characteristics of options, all suggest that higher values of 

skewness and kurtosis translate into lesser underperformance of the delta-hedged put strategy. 

This is in stark contrast to the results for call options in Table 7 that delta-hedged call gains are 

negatively related to the higher moments. What causes the results for call and put options to 

differ is their different exposures to the market jump. Buyers of index call options gain when 

a positive jump occurs, while buyers of put options gain from negative jumps. Thus, investors 

pay premium for call options when they expect a positive jump, while they pay premium for 

put options when they expect a negative jump.  

 

[Table 8 about here] 

 

Taken together, our results show that delta-hedged gains are negatively associated with 

skewness and kurtosis among call options, but positively associated with the higher moments 
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among put options. This is the key new finding of our paper, implying that investors pay 

premium for options depending on the direction of jumps they anticipate.  

 

3.4. Subsample Analysis 

In this section, we repeat the previous analyses for two sub-periods: the first spans 1996 to 

2008, and the second covers 2009 to 2014. These subsamples are chosen because the financial 

crisis of 2008 incurred dramatic changes in the real economy and many researchers often 

classify periods as before- and after-2008. Also, as we discussed from Figure 1 in Section 2.2, 

the option-implied moments indicate that the distribution of index returns becomes more 

negatively skewed and fat-tailed after the 2008 financial crisis.  

In Table 9, we repeat the analysis in Table 7 for two sub-periods. Specifically, we run the 

time-series regression of the delta-hedged call gains on the lagged gains and ex ante moments 

for each sub-period. The table shows that in the first sub-period, skewness and kurtosis, as well 

as volatility, affect the delta-hedged gains negatively, consistent with the results shown in 

Table 7. However, in the second sub-period, the negative impacts of the skewness and kurtosis 

disappear. This holds irrespective of the maturity of options examined.  

The results of put options, presented in Table 10, show that the relation between the delta-

hedged gains and ex ante moments does not change before and after 2008. In both sub-periods, 

volatility is negatively related to the delta-hedged gains and higher moments are positively 

associated with the delta-hedged gains.  

 

 [Table 9 about here] 

 [Table 10 about here] 
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In sum, the results in Tables 9 and 10 imply that investors have paid premium for calls in 

anticipation of a positive jump before the 2008 financial crisis, but after that, this tendency 

disappears. In contrast, investors are still willing to pay premium for puts in anticipation of a 

negative jump after the financial crisis.  

 

4. Conclusion 

This paper provides a comprehensive study of delta-hedged gains from stock index options 

in relation to the ex ante risk-neutral moments of market returns. Given several market crashes 

in the last two decades, it is worth revisiting the question of whether and how ex ante moments 

in market returns influence the delta-hedge option gains. Using S&P 500 index option data, we 

find that the delta-hedged option strategy loses money in general and its underperformance is 

more pronounced with higher ex ante volatility, confirming that index option prices incorporate 

the negative volatility risk premium. The key new finding is that the delta-hedged gains are 

negatively associated with skewness and kurtosis among call options, but positively associated 

with the higher moments among put options. This holds for a wide range of options’ moneyness 

and maturity. These results suggest that investors pay premium for call options in anticipation 

of a positive jump, while they pay premium for put options in anticipation of a negative jump.  
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Table 1. Summary statistics 

The data on S&P 500 index options are from the OptionMetrics Ivy database over the sample period from January 

1996 to December 2014. The table reports the number of days when the options data are observed during our sample 

period, the average daily number of options, price (i.e., midpoint of the bid and ask quotes), bid-ask spread, trading 

volume, and open interest, separately for options with maturity 14-30 days and 31-60 days and with eight different 

ranges of moneyness. The moneyness of the option is defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1, where S is the underlying index 

value, 𝐾 is the strike price, 𝜏 is the time-to-maturity, 𝑟 is the risk-free rate, and 𝛿 is the dividend yield. Panel A is for 

call options and Panel B is for put options.  

Panel A: Call options 

Time-to-

maturity 

Moneyness 

y 

Number of 

days 

Daily Number 

of options 
Price 

Bid-ask  

spread 

Trading 

volume 

Open 

interest 

14-30 

days 

  

-10% to -7.5% 761 3.0 1.93 0.58 4,522 48,032 

-7.5% to -5% 1,894 4.1 2.37 0.55 5,464 49,810 

-5% to -2.5% 2,579 7.1 5.11 0.72 10,367 82,335 

-2.5% to 0% 2,646 7.9 13.96 1.16 14,730 98,199 

0% to 2.5% 2,615 7.3 31.61 1.78 7,416 82,792 

2.5% to 5% 2,547 6.5 54.98 2.14 1,173 48,282 

5% to 7.5% 2,367 5.4 79.86 2.29 529 25,990 

7.5% to 10% 1,979 4.4 104.49 2.47 248 15,371 

31-60 

days 

  

-10% to -7.5% 3,379 4.1 3.05 0.73 2,818 33,875 

-7.5% to -5% 4,391 6.0 5.32 0.85 4,924 49,568 

-5% to -2.5% 4,558 7.5 11.27 1.21 8,027 68,812 

-2.5% to 0% 4,558 7.6 22.87 1.65 10,400 72,023 

0% to 2.5% 4,557 7.3 39.93 1.99 7,418 66,924 

2.5% to 5% 4,547 6.7 60.78 2.18 1,206 44,771 

5% to 7.5% 4,509 5.9 83.51 2.29 460 27,484 

7.5% to 10% 4,390 5.0 106.51 2.41 237 14,829 

 

Panel B: Put options 

Time-to-

maturity 

Moneyness 

y 

Number of 

days 

Daily Number 

of options 
Price 

Bid-ask  

spread 

Trading 

volume 

Open 

interest 

14-30 

days 

  

-10% to -7.5% 1,072 4.5 122.91 3.16 226 17,422 

-7.5% to -5% 1,543 5.8 85.41 2.85 619 22,292 

-5% to -2.5% 2,291 7.0 53.47 2.34 1,224 30,819 

-2.5% to 0% 2,623 7.8 30.20 1.85 6,797 54,938 

0% to 2.5% 2,651 7.6 16.25 1.25 16,183 100,910 

2.5% to 5% 2,649 7.1 9.30 0.98 12,299 105,263 

5% to 7.5% 2,599 6.6 5.73 0.79 9,928 94,644 

7.5% to 10% 2,518 6.0 3.82 0.67 9,160 84,532 

31-60 

days 

  

-10% to -7.5% 2,172 5.6 117.57 2.94 215 16,278 

-7.5% to -5% 3,181 6.4 86.55 2.70 356 19,410 

-5% to -2.5% 4,300 7.1 58.04 2.29 1,071 27,917 

-2.5% to 0% 4,558 7.6 38.37 2.01 6,468 48,560 

0% to 2.5% 4,557 7.3 25.34 1.71 13,647 81,586 

2.5% to 5% 4,549 6.7 17.20 1.49 8,976 82,275 

5% to 7.5% 4,522 6.1 12.07 1.27 7,197 72,661 

7.5% to 10% 4,495 5.7 8.74 1.10 5,778 60,172 
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Table 2. Descriptive statistics of option-implied moments of S&P 500 index returns 

This table reports the model-free estimates of risk-neutral moments implied in S&P 500 index option prices. We 

compute the risk-neutral moments following the procedure in Bakshi, Kapadia, and Madan (2003), detailed in Section 

2.2. The reported values are the 5th percentile, median, and 95th percentile of daily estimates for volatility, skewness, 

and kurtosis by year, over the sample period from January 1996 through December 2014.  

 Volatility  Skewness  Kurtosis 

Year P5 P50 P95  P5 P50 P95  P5 P50 P95 

1996 0.13 0.16 0.20  -1.95 -1.66 -1.20  5.72 7.71 9.55 

1997 0.19 0.21 0.33  -2.28 -1.23 -0.60  4.16 5.94 11.22 

1998 0.18 0.24 0.42  -2.57 -2.11 -1.65  7.00 10.77 14.29 

1999 0.20 0.25 0.30  -2.13 -1.74 -1.37  6.61 8.51 12.29 

2000 0.18 0.23 0.29  -1.67 -1.28 -0.79  4.98 6.32 8.49 

2001 0.20 0.24 0.36  -2.19 -1.38 -1.04  5.45 7.19 12.40 

2002 0.19 0.27 0.41  -1.98 -1.38 -0.98  4.91 6.83 10.28 

2003 0.17 0.20 0.34  -2.04 -1.21 -0.81  4.60 6.30 11.72 

2004 0.13 0.15 0.19  -2.11 -1.63 -1.02  5.93 8.56 13.28 

2005 0.11 0.13 0.16  -2.61 -1.86 -1.33  7.20 10.41 16.38 

2006 0.11 0.12 0.18  -2.80 -1.96 -1.39  7.27 10.49 18.33 

2007 0.10 0.17 0.27  -2.68 -2.05 -1.23  5.02 10.04 15.97 

2008 0.19 0.25 0.73  -2.01 -1.33 -0.98  4.48 6.11 10.61 

2009 0.22 0.30 0.50  -2.51 -1.81 -1.28  6.75 9.93 15.73 

2010 0.17 0.22 0.35  -2.87 -2.08 -1.61  7.95 11.28 19.25 

2011 0.16 0.22 0.42  -3.31 -2.33 -1.71  8.27 12.78 24.96 

2012 0.15 0.18 0.23  -3.45 -2.19 -1.55  7.52 12.66 30.12 

2013 0.13 0.14 0.18  -3.47 -2.18 -1.64  8.14 12.13 27.68 

2014 0.12 0.14 0.21  -4.49 -3.16 -2.30  12.93 22.80 43.44 
            

All 0.12 0.20 0.38  -3.06 -1.79 -1.01  5.12 9.09 22.01 
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Table 3. Delta-hedged gains for S&P 500 index call options 

This table reports the average delta-hedged gains for S&P 500 index call options, separately for options with maturity 

14-30 days and 31-60 days and with eight different ranges of moneyness. The moneyness of the option is defined as 

y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Following Bakshi and Kapadia (2003), we compute the delta-hedged gain as the change in the 

value of a self-financing portfolio consisting of a long call position, hedged by a short position in the underlying index. 

The hedge is rebalanced at each of the dates until expiration. The daily rebalanced delta-hedged call option gain over 

the period [𝑡, 𝑡 + 𝜏], 𝜋𝑡,𝑡+𝜏, is computed as  

𝜋𝑡,𝑡+𝜏 = 𝐶𝑡+𝜏 − 𝐶𝑡 − ∑ ∆𝑡𝑛
(𝑆𝑡𝑛+1

− 𝑆𝑡𝑛
)𝑁−1

𝑛=0 − ∑ 𝑟𝑛(𝐶𝑡𝑛
− ∆𝑡𝑛

𝑆𝑡𝑛
)

𝜏

𝑁

𝑁−1
𝑛=0 ,  

where ∆𝑡𝑛
is the delta of the option and 𝑟𝑛 is annualized risk-free rate at each of the dates 𝑡𝑛, 𝑛 = 0,1, … , 𝑁 − 1 (where 

we define 𝑡0 = 𝑡, 𝑡𝑁 = 𝑡 + 𝜏 ). The table presents the averages of (i) the dollar delta-hedged gains (𝜋𝑡,𝑡+𝜏), (ii) the 

delta-hedged gains scaled by the index level (𝜋𝑡,𝑡+𝜏/𝑆𝑡), and (iii) the delta-hedged gains scaled by the option price 

(𝜋𝑡,𝑡+𝜏/𝐶𝑡). The corresponding standard errors are reported in parentheses. For comparison, we report the option 

percentage spread as the difference between ask and bid quotes divided by the midpoint. 1𝜋<0 is the proportion of 

delta-hedged gains with 𝜋𝑡,𝑡+𝜏 < 0.  

Moneyness 

y 

π  

(in $) 

π/S  

(in %) 

π/C  

(in %) 

(Ask-Bid)/C  

(in %) 

1π<0  

(%) 

Panel A: 14-30 days      

-10% to -7.5% -0.22 -0.01 -58.99 50.54 66.89 

 (0.13) (0.01) (4.54)   

-7.5% to -5% -0.61 -0.05 -61.71 39.64 66.26 

 (0.09) (0.01) (2.92)   

-5% to -2.5% -1.17 -0.10 -37.57 21.09 63.75 

 (0.11) (0.01) (2.02)   

-2.5% to 0% -1.99 -0.18 -15.65 9.11 61.72 

 (0.16) (0.01) (1.11)   

0% to 2.5% -3.19 -0.27 -10.15 5.79 64.02 

 (0.23) (0.02) (0.69)   

2.5% to 5% -3.92 -0.33 -7.28 3.99 63.53 

 (0.31) (0.03) (0.58)   

5% to 7.5% -4.54 -0.37 -5.69 2.93 60.29 

 (0.40) (0.03) (0.54)   

7.5% to 10% -6.02 -0.50 -5.87 2.38 62.05 

 (0.51) (0.04) (0.54)   

Panel B: 31-60 days      

-10% to -7.5% -1.18 -0.12 -56.60 47.97 67.53 

 (0.08) (0.01) (2.02)   

-7.5% to -5% -1.76 -0.17 -45.02 30.23 66.59 

 (0.09) (0.01) (1.57)   

-5% to -2.5% -2.86 -0.27 -30.27 14.25 66.92 

 (0.13) (0.01) (1.10)   

-2.5% to 0% -3.70 -0.33 -17.22 7.73 66.76 

 (0.16) (0.01) (0.69)   

0% to 2.5% -4.57 -0.39 -11.62 5.13 68.31 

 (0.19) (0.02) (0.47)   

2.5% to 5% -5.20 -0.44 -8.48 3.65 67.14 

 (0.23) (0.02) (0.38)   

5% to 7.5% -6.19 -0.51 -7.28 2.77 65.51 

 (0.28) (0.02) (0.35)   

7.5% to 10% -8.55 -0.71 -8.25 2.27 64.01 

 (0.34) (0.03) (0.35)   



- 24 - 
 

Table 4. Delta-hedged gains for S&P 500 index put options 

This table reports the average delta-hedged gains for S&P 500 index put options, separately for options with maturity 

14-30 days and 31-60 days and with eight different ranges of moneyness. The moneyness of the option is defined as 

y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Following Bakshi and Kapadia (2003), we compute the delta-hedged gain as the change in the 

value of a self-financing portfolio consisting of a long put position, hedged by a long position in the underlying index. 

The hedge is rebalanced at each of the dates until expiration. The daily rebalanced delta-hedged put option gain over 

the period [𝑡, 𝑡 + 𝜏], 𝜋𝑡,𝑡+𝜏, is computed as  

𝜋𝑡,𝑡+𝜏 = 𝑃𝑡+𝜏 − 𝑃𝑡 − ∑ ∆𝑡𝑛
(𝑆𝑡𝑛+1

− 𝑆𝑡𝑛
)𝑁−1

𝑛=0 − ∑ 𝑟𝑛(𝑃𝑡𝑛
− ∆𝑡𝑛

𝑆𝑡𝑛
)

𝜏

𝑁

𝑁−1
𝑛=0 ,  

where ∆𝑡𝑛
is the delta of the option and 𝑟𝑛 is annualized risk-free rate at each of the dates 𝑡𝑛, 𝑛 = 0,1, … , 𝑁 − 1 (where 

we define 𝑡0 = 𝑡, 𝑡𝑁 = 𝑡 + 𝜏 ). The table presents the averages of (i) the dollar delta-hedged gains (𝜋𝑡,𝑡+𝜏), (ii) the 

delta-hedged gains scaled by the index level (𝜋𝑡,𝑡+𝜏/𝑆𝑡), and (iii) the delta-hedged gains scaled by the option price 

(𝜋𝑡,𝑡+𝜏/𝑃𝑡). The corresponding standard errors are reported in parentheses. For comparison, we report the option 

percentage spread as the difference between ask and bid quotes divided by the midpoint. 1𝜋<0 is the proportion of 

delta-hedged gains with 𝜋𝑡,𝑡+𝜏 < 0.  

Moneyness 

y 

π  

(in $) 

π/S  

(in %) 

π/P  

(in %) 

(Ask-Bid)/P  

(in %) 

1π<0  

(%) 

Panel A: 14-30 days      

-10% to -7.5% -9.59 -0.80 -8.11 2.58 65.95 

 (0.79) (0.06) (0.81)   

-7.5% to -5% -8.01 -0.67 -9.26 3.33 67.47 

 (0.62) (0.05) (0.87)   

-5% to -2.5% -6.45 -0.52 -11.82 4.45 71.63 

 (0.41) (0.03) (0.87)   

-2.5% to 0% -4.44 -0.35 -14.74 6.24 73.85 

 (0.28) (0.02) (0.95)   

0% to 2.5% -3.25 -0.27 -20.15 7.86 75.90 

 (0.19) (0.02) (1.07)   

2.5% to 5% -2.68 -0.23 -30.01 11.58 80.86 

 (0.14) (0.01) (1.16)   

5% to 7.5% -2.10 -0.18 -39.32 16.49 83.46 

 (0.13) (0.01) (1.30)   

7.5% to 10% -1.59 -0.14 -46.00 22.48 86.26 

 (0.12) (0.01) (1.39)     

Panel B: 31-60 days           

-10% to -7.5% -13.48 -1.13 -11.22 2.51 72.19 

 (0.66) (0.05) (0.73)   

-7.5% to -5% -11.74 -0.97 -13.27 3.11 75.29 

 (0.51) (0.04) (0.75)   

-5% to -2.5% -9.72 -0.82 -16.50 4.00 77.77 

 (0.36) (0.03) (0.75)   

-2.5% to 0% -7.59 -0.64 -20.00 5.40 80.10 

 (0.27) (0.02) (0.80)   

0% to 2.5% -5.67 -0.48 -23.02 7.03 80.21 

 (0.22) (0.02) (0.83)   

2.5% to 5% -4.50 -0.39 -27.89 9.24 83.05 

 (0.17) (0.01) (0.88)   

5% to 7.5% -3.68 -0.32 -34.08 11.91 84.45 

 (0.13) (0.01) (0.85)   

7.5% to 10% -2.75 -0.24 -38.66 15.02 86.18 

 (0.11) (0.01) (0.90)     
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Table 5. Delta-hedged gains and volatility risk premium: S&P 500 index call options 

This table reports the estimation results for call options from the regression of delta-hedged gains on the lagged delta-

hedged gains and the risk-neutral volatility: 

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝜀𝑡, 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡  is the model-free estimate of risk-neutral volatility, constructed following 

Bakshi, Kapadia, and Madan (2003). The reported values are the coefficient estimates, the corresponding t-statistics 

(in parenthesis), and the adjusted R2. The t-statistics are based on the Newey-West procedures with a lag length of 30. 

The regressions are performed separately for each maturity and moneyness category. The moneyness of the option is 

defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Panel A is for options with time-to-maturity between 14 and 30 days and Panel B is 

for options with time-to-maturity between 31 and 60 days. 

Moneyness 

y 
Intercept 

Lagged 

Gains 
VOL R2 (%) 

Panel A: 14-30 days     

-10% to -7.5% 0.105 0.915 -0.451 85.4 

 (3.06) (16.78) (-3.58)  

-7.5% to -5% 0.027 0.928 -0.160 90.5 

 (2.47) (32.16) (-2.78)  

-5% to -2.5% 0.015 0.953 -0.090 93.9 

 (1.18) (92.74) (-1.29)  

-2.5% to 0% 0.021 0.961 -0.084 94.7 

 (1.59) (127.31) (-1.16)  

0% to 2.5% 0.018 0.978 -0.052 96.6 

 (1.50) (234.42) (-0.82)  

2.5% to 5% 0.026 0.985 -0.047 97.6 

 (1.89) (368.09) (-0.65)  

5% to 7.5% 0.040 0.978 -0.016 97.5 

 (2.33) (274.38) (-0.19)  

7.5% to 10% 0.057 0.977 0.072 96.1 

 (2.80) (184.24) (0.78)  

Panel B: 31-60 days     

-10% to -7.5% 0.110 0.931 -0.552 93.8 

 (5.95) (60.98) (-6.70)  

-7.5% to -5% 0.063 0.958 -0.347 96.0 

 (5.84) (103.91) (-6.15)  

-5% to -2.5% 0.050 0.966 -0.271 96.4 

 (5.21) (166.18) (-5.33)  

-2.5% to 0% 0.038 0.967 -0.204 96.3 

 (4.75) (175.44) (-4.77)  

0% to 2.5% 0.032 0.970 -0.176 96.1 

 (3.69) (209.50) (-3.80)  

2.5% to 5% 0.017 0.977 -0.095 96.6 

 (1.84) (250.16) (-2.07)  

5% to 7.5% 0.017 0.977 -0.090 96.7 

 (1.63) (279.74) (-1.77)  

7.5% to 10% 0.011 0.972 -0.048 96.2 

 (0.61) (240.29) (-0.51)  
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Table 6. Delta-hedged gains and volatility risk premium: S&P 500 index put options 

This table reports the estimation results for put options from the regression of delta-hedged gains on the lagged delta-

hedged gains and the risk-neutral volatility: 

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝜀𝑡, 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡  is the model-free estimate of risk-neutral volatility, constructed following 

Bakshi, Kapadia, and Madan (2003). The reported values are the coefficient estimates, the corresponding t-statistics 

(in parenthesis), and the adjusted R2. The t-statistics are based on the Newey-West procedures with a lag length of 30. 

The regressions are performed separately for each maturity and moneyness category. The moneyness of the option is 

defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Panel A is for options with time-to-maturity between 14 and 30 days and Panel B is 

for options with time-to-maturity between 31 and 60 days. 

Moneyness 

y 
Intercept 

Lagged 

Gains 
VOL R2 (%) 

Panel A: 14-30 days     

-10% to -7.5% 0.105 0.921 -0.613 89.8 

 (2.79) (69.96) (-3.12)  

-7.5% to -5% 0.184 0.945 -0.616 93.5 

 (6.65) (127.69) (-5.61)  

-5% to -2.5% 0.168 0.939 -0.525 93.5 

 (6.61) (92.77) (-5.05)  

-2.5% to 0% 0.052 0.981 -0.154 97.0 

 (3.36) (208.75) (-2.04)  

0% to 2.5% 0.022 0.974 -0.061 96.5 

 (2.25) (171.91) (-1.19)  

2.5% to 5% 0.017 0.970 -0.040 96.4 

 (1.98) (119.20) (-0.89)  

5% to 7.5% 0.004 0.975 0.031 97.4 

 (0.47) (127.68) (0.76)  

7.5% to 10% -0.017 0.977 0.161 97.5 

 (-1.56) (66.06) (2.73)   

Panel B: 31-60 days         

-10% to -7.5% 0.105 0.964 -0.530 95.1 

 (2.95) (183.06) (-3.46)  

-7.5% to -5% 0.150 0.970 -0.510 95.6 

 (5.34) (229.62) (-4.74)  

-5% to -2.5% 0.152 0.964 -0.606 95.8 

 (6.89) (239.61) (-6.40)  

-2.5% to 0% 0.070 0.969 -0.377 96.6 

 (3.96) (227.98) (-4.12)  

0% to 2.5% 0.046 0.972 -0.230 97.0 

 (5.05) (235.93) (-5.13)  

2.5% to 5% 0.035 0.966 -0.174 96.8 

 (4.81) (157.89) (-4.42)  

5% to 7.5% 0.011 0.956 -0.062 95.9 

 (1.36) (128.36) (-1.44)  

7.5% to 10% -0.002 0.946 0.029 95.3 

 (-0.16) (79.67) (0.52)   
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Table 7. Delta-hedged gains and jump exposures: S&P 500 index call options 

This table reports the estimation results for call options from the regression of delta-hedged gains on the lagged delta-

hedged gains, the risk-neutral volatility, skewness, and kurtosis: 

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝛽3𝑆𝐾𝐸𝑊𝑡 + 𝛽4𝐾𝑈𝑅𝑇𝑡 + 𝜀𝑡, 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡 , 𝑆𝐾𝐸𝑊𝑡, and 𝐾𝑈𝑅𝑇𝑡  are the model-free estimates of the risk-neutral volatility, 

skewness, and kurtosis, respectively, constructed following Bakshi, Kapadia, and Madan (2003). The reported values 

are the coefficient estimates, the corresponding t-statistics (in parenthesis), and the adjusted R2. The t-statistics are 

based on the Newey-West procedures with a lag length of 30. The regressions are performed separately for each 

maturity and moneyness category. The moneyness of the option is defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Panel A is for 

options with time-to-maturity between 14 and 30 days and Panel B is for options with time-to-maturity between 31 

and 60 days. 

Moneyness 

y 
Intercept 

Lagged 

Gains 
VOL SKEW KURT R2 (%) 

Panel A: 14-30 days       

-10% to -7.5% 0.074 0.918 -0.469 -0.044 -0.004 85.5 

 (2.51) (17.05) (-3.48) (-1.36) (-1.17)  

-7.5% to -5% 0.007 0.928 -0.159 -0.020 -0.002 90.5 

 (0.42) (31.91) (-2.63) (-1.27) (-1.26)  

-5% to -2.5% -0.015 0.953 -0.084 -0.030 -0.003 93.9 

 (-0.65) (90.36) (-1.13) (-1.77) (-1.73)  

-2.5% to 0% -0.026 0.960 -0.082 -0.052 -0.005 94.7 

 (-1.01) (119.94) (-1.07) (-2.37) (-2.44)  

0% to 2.5% -0.047 0.978 -0.059 -0.079 -0.008 96.6 

 (-2.09) (227.61) (-0.86) (-3.71) (-3.71)  

2.5% to 5% -0.041 0.986 -0.064 -0.090 -0.009 97.6 

 (-1.56) (369.50) (-0.80) (-4.25) (-4.41)  

5% to 7.5% -0.025 0.978 -0.042 -0.093 -0.010 97.5 

 (-0.70) (274.31) (-0.44) (-3.37) (-3.94)  

7.5% to 10% 0.002 0.977 0.029 -0.094 -0.010 96.1 

 (0.03) (187.86) (0.29) (-1.45) (-1.85)  

Panel B: 31-60 days       

-10% to -7.5% 0.093 0.931 -0.571 -0.035 -0.004 93.8 

 (4.66) (63.15) (-6.73) (-2.92) (-3.18)  

-7.5% to -5% 0.035 0.958 -0.352 -0.037 -0.004 96.0 

 (2.64) (106.85) (-6.13) (-3.79) (-3.87)  

-5% to -2.5% 0.011 0.965 -0.272 -0.045 -0.004 96.4 

 (0.86) (159.80) (-5.22) (-4.19) (-4.14)  

-2.5% to 0% -0.012 0.967 -0.206 -0.059 -0.006 96.3 

 (-0.74) (165.70) (-4.55) (-4.14) (-3.98)  

0% to 2.5% -0.025 0.970 -0.184 -0.076 -0.008 96.1 

 (-1.43) (194.04) (-3.67) (-4.58) (-4.46)  

2.5% to 5% -0.058 0.977 -0.105 -0.097 -0.010 96.6 

 (-2.97) (232.95) (-2.07) (-5.24) (-5.03)  

5% to 7.5% -0.063 0.977 -0.107 -0.109 -0.011 96.7 

 (-2.76) (273.33) (-1.92) (-5.14) (-5.18)  

7.5% to 10% -0.062 0.972 -0.080 -0.114 -0.013 96.3 

 (-1.78) (236.27) (-0.81) (-4.05) (-4.44)  
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Table 8. Delta-hedged gains and jump exposures: S&P 500 index put options 

This table reports the estimation results for put options from the regression of delta-hedged gains on the lagged delta-

hedged gains, the risk-neutral volatility, skewness, and kurtosis: 

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝛽3𝑆𝐾𝐸𝑊𝑡 + 𝛽4𝐾𝑈𝑅𝑇𝑡 + 𝜀𝑡, 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡 , 𝑆𝐾𝐸𝑊𝑡, and 𝐾𝑈𝑅𝑇𝑡  are the model-free estimates of the risk-neutral volatility, 

skewness, and kurtosis, respectively, constructed following Bakshi, Kapadia, and Madan (2003). The reported values 

are the coefficient estimates, the corresponding t-statistics (in parenthesis), and the adjusted R2. The t-statistics are 

based on the Newey-West procedures with a lag length of 30. The regressions are performed separately for each 

maturity and moneyness category. The moneyness of the option is defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Panel A is for 

options with time-to-maturity between 14 and 30 days and Panel B is for options with time-to-maturity between 31 

and 60 days. 

Moneyness 

y 
Intercept 

Lagged 

Gains 
VOL SKEW KURT R2 (%) 

Panel A: 14-30 days       

-10% to -7.5% 0.242 0.921 -0.569 0.197 0.021 89.8 

 (2.00) (69.02) (-2.69) (1.96) (2.01)  

-7.5% to -5% 0.291 0.945 -0.583 0.148 0.016 93.5 

 (4.34) (129.54) (-5.02) (2.37) (2.52)  

-5% to -2.5% 0.182 0.939 -0.499 0.035 0.004 93.5 

 (3.21) (92.11) (-4.54) (0.70) (0.94)  

-2.5% to 0% 0.107 0.982 -0.158 0.059 0.005 97.0 

 (3.50) (206.02) (-1.92) (2.80) (2.83)  

0% to 2.5% 0.065 0.973 -0.055 0.055 0.006 96.5 

 (3.85) (167.42) (-1.07) (4.41) (4.64)  

2.5% to 5% 0.054 0.968 -0.045 0.041 0.004 96.4 

 (3.98) (120.03) (-0.94) (4.44) (4.36)  

5% to 7.5% 0.029 0.974 0.024 0.024 0.002 97.4 

 (2.75) (125.45) (0.57) (3.44) (3.16)  

7.5% to 10% 0.006 0.976 0.149 0.018 0.001 97.5 

 (0.36) (64.67) (2.39) (1.88) (1.54)   

Panel B: 31-60 days             

-10% to -7.5% 0.131 0.964 -0.503 0.062 0.008 95.1 

 (1.42) (183.29) (-3.01) (0.76) (0.90)  

-7.5% to -5% 0.243 0.969 -0.475 0.137 0.015 95.7 

 (4.37) (224.71) (-4.06) (2.76) (2.70)  

-5% to -2.5% 0.253 0.964 -0.613 0.107 0.009 95.8 

 (7.11) (234.88) (-6.23) (3.40) (2.97)  

-2.5% to 0% 0.103 0.969 -0.364 0.051 0.006 96.7 

 (3.86) (225.42) (-3.87) (2.64) (2.83)  

0% to 2.5% 0.095 0.972 -0.228 0.060 0.006 97.0 

 (5.51) (235.57) (-4.99) (4.08) (3.92)  

2.5% to 5% 0.074 0.965 -0.171 0.049 0.005 96.9 

 (5.88) (160.65) (-4.28) (4.66) (4.49)  

5% to 7.5% 0.034 0.955 -0.057 0.033 0.003 95.9 

 (2.70) (128.50) (-1.28) (3.39) (3.46)  

7.5% to 10% 0.015 0.945 0.030 0.022 0.002 95.3 

 (1.12) (79.96) (0.54) (2.12) (2.20)   
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Table 9. Pre- and post-2008 results for delta-hedged gains: S&P 500 index call options 

This table repeats the analysis in Table 6 for two sub-periods: the first spans 1996 to 2008, and the second covers 2009 

to 2014. The table reports the estimation results for call options from the regression of delta-hedged gains on the 

lagged delta-hedged gains, the risk-neutral volatility, skewness, and kurtosis: 

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝛽3𝑆𝐾𝐸𝑊𝑡 + 𝛽4𝐾𝑈𝑅𝑇𝑡 + 𝜀𝑡, 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡 , 𝑆𝐾𝐸𝑊𝑡, and 𝐾𝑈𝑅𝑇𝑡  are the model-free estimates of the risk-neutral volatility, 

skewness, and kurtosis, respectively, constructed following Bakshi, Kapadia, and Madan (2003). The reported values 

are the coefficient estimates, the corresponding t-statistics (in parenthesis), and the adjusted R2. The t-statistics are 

based on the Newey-West procedures with a lag length of 30. The estimates for the intercept and the coefficient on 

the lagged gains are not reported for simplicity. The regressions are performed separately for each maturity and 

moneyness category. The moneyness of the option is defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Panel A is for options with 

maturity 14-30 days and Panel B for options with maturity 31-60 days. 

 Pre-2008  Post-2008 

Moneyness 

y 
VOL SKEW KURT  VOL SKEW KURT 

Panel A: 14-30 days        

-10% to -7.5% -0.565 -0.063 -0.005  -0.171 0.056 0.005 

 (-3.37) (-1.98) (-1.02)  (-1.79) (2.20) (2.48) 

-7.5% to -5% -0.221 -0.054 -0.005  -0.109 0.029 0.002 

 (-2.52) (-1.88) (-1.24)  (-1.91) (2.40) (2.44) 

-5% to -2.5% -0.069 -0.079 -0.008  -0.141 0.035 0.003 

 (-0.72) (-2.63) (-2.09)  (-1.94) (2.43) (2.46) 

-2.5% to 0% -0.052 -0.131 -0.015  -0.178 0.035 0.003 

 (-0.52) (-3.33) (-2.76)  (-2.31) (1.84) (1.73) 

0% to 2.5% -0.028 -0.193 -0.025  -0.179 0.009 0.000 

 (-0.33) (-3.77) (-3.01)  (-2.37) (0.43) (0.12) 

2.5% to 5% -0.043 -0.214 -0.029  -0.193 -0.011 -0.002 

 (-0.40) (-3.57) (-2.87)  (-2.66) (-0.53) (-1.12) 

5% to 7.5% -0.070 -0.223 -0.035  -0.068 -0.117 -0.010 

 (-0.46) (-3.92) (-3.77)  (-0.72) (-2.32) (-2.68) 

7.5% to 10% -0.012 -0.029 -0.007  0.137 -0.267 -0.024 

 (-0.10) (-0.29) (-0.52)  (0.58) (-1.84) (-2.06) 

Panel B: 31-60 days        

-10% to -7.5% -0.697 -0.086 -0.012  -0.356 -0.002 0.000 

 (-8.63) (-3.70) (-2.87)  (-3.68) (-0.12) (-0.05) 

-7.5% to -5% -0.408 -0.066 -0.008  -0.237 -0.014 -0.001 

 (-6.94) (-4.68) (-4.11)  (-3.10) (-0.88) (-0.76) 

-5% to -2.5% -0.303 -0.077 -0.010  -0.215 -0.031 -0.002 

 (-5.22) (-4.72) (-4.05)  (-2.63) (-1.37) (-1.36) 

-2.5% to 0% -0.230 -0.109 -0.014  -0.201 -0.010 -0.001 

 (-4.78) (-4.43) (-3.71)  (-2.10) (-0.41) (-0.52) 

0% to 2.5% -0.166 -0.174 -0.024  -0.309 0.001 0.000 

 (-2.84) (-4.97) (-4.02)  (-3.30) (0.03) (0.04) 

2.5% to 5% -0.150 -0.203 -0.027  -0.090 0.018 0.001 

 (-2.21) (-5.16) (-4.16)  (-0.91) (0.63) (0.57) 

5% to 7.5% -0.146 -0.220 -0.030  -0.161 0.021 0.000 

 (-1.91) (-4.83) (-4.08)  (-1.48) (0.63) (0.09) 

7.5% to 10% -0.076 -0.193 -0.028  -0.234 -0.045 -0.007 

 (-0.77) (-4.04) (-3.97)  (-0.97) (-0.82) (-1.46) 
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Table 10. Pre- and post-2008 results for delta-hedged gains: S&P 500 index put options 

This table repeats the analysis in Table 7 for two sub-periods: the first spans 1996 to 2008, and the second covers 2009 

to 2014. The table reports the estimation results for put options from the regression of delta-hedged gains on the lagged 

delta-hedged gains, the risk-neutral volatility, skewness, and kurtosis: 

𝐺𝐴𝐼𝑁𝑆𝑡 = 𝛽0 + 𝛽1𝐺𝐴𝐼𝑁𝑆𝑡−1 + 𝛽2𝑉𝑂𝐿𝑡 + 𝛽3𝑆𝐾𝐸𝑊𝑡 + 𝛽4𝐾𝑈𝑅𝑇𝑡 + 𝜀𝑡, 

where 𝐺𝐴𝐼𝑁𝑆𝑡 ≡ 𝜋𝑡,𝑡+𝜏 𝑆𝑡⁄  and 𝑉𝑂𝐿𝑡 , 𝑆𝐾𝐸𝑊𝑡, and 𝐾𝑈𝑅𝑇𝑡  are the model-free estimates of the risk-neutral volatility, 

skewness, and kurtosis, respectively, constructed following Bakshi, Kapadia, and Madan (2003). The reported values 

are the coefficient estimates, the corresponding t-statistics (in parenthesis), and the adjusted R2. The t-statistics are 

based on the Newey-West procedures with a lag length of 30. The estimates for the intercept and coefficient on the 

lagged gains are not reported for simplicity. The regressions are performed separately for each maturity and moneyness 

group. The moneyness is defined as y ≡ S𝑒(𝑟−𝛿)𝜏/𝐾 − 1. Panel A is for options with maturity 14-30 days and Panel 

B for options with maturity 31-60 days. 

 Pre-2008  Post-2008 

Moneyness 

y 
VOL SKEW KURT  VOL SKEW KURT 

Panel A: 14-30 days        

-10% to -7.5% -0.775 0.660 0.106  -0.117 0.190 0.021 

 (-4.17) (1.80) (1.73)  (-0.43) (1.56) (1.98) 

-7.5% to -5% -0.642 0.392 0.069  -0.432 0.152 0.015 

 (-3.54) (2.08) (1.89)  (-4.20) (2.71) (2.80) 

-5% to -2.5% -0.596 0.201 0.058  -0.301 0.084 0.010 

 (-3.57) (1.41) (1.99)  (-3.04) (1.92) (2.31) 

-2.5% to 0% -0.114 0.147 0.026  -0.123 0.080 0.006 

 (-1.04) (2.39) (2.49)  (-1.85) (4.30) (4.18) 

0% to 2.5% 0.010 0.115 0.018  -0.123 0.076 0.006 

 (0.15) (3.29) (2.89)  (-2.10) (4.23) (4.06) 

2.5% to 5% 0.019 0.075 0.011  -0.121 0.058 0.004 

 (0.29) (3.51) (2.86)  (-2.47) (3.67) (3.34) 

5% to 7.5% 0.035 0.043 0.006  0.015 0.036 0.003 

 (0.59) (2.96) (2.55)  (0.36) (3.43) (3.02) 

7.5% to 10% 0.167 0.035 0.004  0.080 0.020 0.001 

 (2.08) (1.91) (1.64)  (0.94) (1.75) (1.37) 

Panel B: 31-60 days              

-10% to -7.5% -0.584 0.269 0.065  -0.323 0.122 0.014 

 (-2.52) (1.01) (1.45)  (-1.30) (1.29) (1.48) 

-7.5% to -5% -0.497 0.363 0.071  -0.421 0.187 0.018 

 (-2.92) (3.13) (3.56)  (-2.24) (3.46) (3.08) 

-5% to -2.5% -0.692 0.244 0.043  -0.282 0.098 0.009 

 (-5.23) (3.58) (4.05)  (-2.69) (3.07) (3.03) 

-2.5% to 0% -0.378 0.144 0.023  -0.312 0.061 0.005 

 (-2.99) (3.96) (3.82)  (-3.20) (2.18) (1.79) 

0% to 2.5% -0.207 0.121 0.018  -0.274 0.079 0.006 

 (-3.46) (4.57) (4.13)  (-3.38) (3.51) (2.96) 

2.5% to 5% -0.147 0.088 0.013  -0.245 0.069 0.005 

 (-2.93) (4.82) (4.17)  (-3.08) (2.96) (2.34) 

5% to 7.5% -0.045 0.068 0.010  -0.081 0.042 0.003 

 (-0.90) (4.28) (3.90)  (-0.90) (1.76) (1.42) 

7.5% to 10% -0.005 0.045 0.006  0.060 0.022 0.002 

 (-0.11) (3.00) (2.68)  (0.55) (0.98) (0.74) 
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Figure 1. Daily option implied moments of S&P 500 index returns 

The figure plots the time series of daily option implied volatility, skewness, and kurtosis for the S&P 500 index return 

from January 1996 through December 2014. To estimate option implied moments, we apply the model-free 

methodology proposed in Bakshi, Kapadia, and Madan (2003) to the S&P 500 index options data available from 

OptionMetrics Database. Details of the methodology and implementation are documented in Section 2.2. 

 

 

 

 


